GROUP
Melody A. Swartz, PhD
William B. Ogden Professor
of Molecular Engineering
Melody A. Swartz is the William B. Ogden Professor in the Pritzker School of Molecular Engineering at the University of Chicago, where she holds a joint appointment in the Ben May Department for Cancer Research. She obtained her BS from Johns Hopkins and PhD from MIT, both in chemical engineering, and carried out postdoctoral work at Harvard Medical School and the Brigham & Women’s Hospital.
Current Research
Swartz’s research focuses on elucidating and exploiting the roles of lymphatic function as it relates to cancer and chronic inflammatory diseases including asthma, using a variety of interdisciplinary approaches from bioengineering, immunobiology, physiology, cell biology and biomechanics. Her lab works in both basic hypothesis-driven research as well as in translational applications.
A major interest has been to understand the immunological implications of lymphangiogenesis in tumors and other chronic inflammatory conditions, including allergic airway disease. Other current projects include elucidating new immunological functions of lymphatic endothelium and developing novel strategies for targeting the lymphatics and sentinel lymph nodes for immunotherapy. Building novel, physiologically relevant, 3D model systems for recapitulating key features of interest in tumor and lymphatic microenvironments has been an integral part of this research program, and they use those models in complementary ways with mouse models to gain new insight into tumor cell invasion and metastasis.
Selected Publications
-
Adjuvant-free immunization with infective filarial larvae as lymphatic homing antigen carriers.
Card C, Wilson DS, Hirosue S, Rincon-Restrepo M, de Titta A, Güç E, Martin C, Bain O, Swartz MA, & Kilarski WW. Adjuvant-free immunization with infective filarial larvae as lymphatic homing antigen carriers. Sci Rep 10, 1055 (2020).
-
Inherent biomechanical traits enable infective filariae to disseminate through collecting lymphatic
Kilarski WW, Martin C, Pisano M, Bain O, Babayan SA, Swartz MA. Inherent biomechanical traits enable infective filariae to disseminate through collecting lymphatic. Nature Communications. 2019.
-
Local induction of lymphangiogenesis
Güç E, Briquez PS, Foretay D, Fankhauser MA, Hubbell JA, Kilarski WW, Swartz MA. Local induction of lymphangiogenesis. Biomaterials. 2017.
-
Transcellular Pathways
Triacca V, Guc E, Kilarski WW, Pisano M, Swartz MA. Transcellular Pathways. Circulation Research. 2017.